
Section 23

Lecture 9
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Precision and IPW

IPW estimators are often considered to be ine!cient, that is, to have
low precision (You will see this in your homework).

In principle, we can give two reasons why:
They give a more appropriate (”honest”) reflection of the uncertainty,
because they do not rely on implausible model assumptions.
They are truly ine!cient, and we could impose the same model
assumptions, and obtain a more e!cient estimator.

Asymptotic results from semi-parametric e!ciency theory suggest
that both these explanations can be true. We will not go into the
details of semiparametric estimation theory, but we will show
properties in some interesting examples.
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Doubly robustness

Natural way is to combine both regression and inverse probability
weighting.

Give a full factorization and see which terms are estimated in IPW
and regression modelling.

Definition (Doubly robust estimator of E(E(Y | L,A = a)))

An estimator µ̂ of a parameter µ is doubly robust if it is a consistent
estimator for µ when either the propensity model or the outcome
regression model is correctly specified, but not necessarily both models are
correctly specified.
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Doubly robust estimator

Theorem (Doubly robust estimator of E(Y | L,A = a))

If either the propensity model ω(a | l ; ε) or the outcome regression model

Q(l , a;ϑ) is correctly specified, then

E
[
I (A = a)Y

ω(a | L; ε) +

(
1→ I (A = a)

ω(a | L; ε)

)
Q(L, a;ϑ)

]
= E[E(Y | L,A = a)].

Intuitively, the doubly robust estimator – unlike the simple inverse
probability weighted estimator – exploits information from both treated
and untreated.

Mats Stensrud Randomisation and Causation Spring 2025 252 / 422



Proof

Proof.

Suppose first that ω(a | l ; ε) is correctly specified, but the outcome model
Q(l , a;ϑ) is misspecified. Use iterative expectation,

E
{
I (A = a)Y

ω(a | L; ε)

}
=E

{
I (A = a)

ω(a | L; ε)E (Y | L,A)
}

=E
{

I (A = a)

ω(a | L; ε)E (Y | L,A = a)

}

=E
{
E(I (A = a) | L)

ω(a | L; ε) E (Y | L,A = a)

}

=E
{

(ω(a | L)
ω(a | L; ε)E (Y | L,A = a)

}

=E {E(Y | L,A = a)} .
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Proof continues

Proof.
Next, consider the second term

E
{(

1→ I (A = a)

ω(a | L; ε)

)
Q(L, a;ϑ)

}
=E

{
E
[(

1→ I (A = a)

ω(a | L; ε)

)
Q(L, a;ϑ) | L

]}

=E
{(

1→ E(I (A = a) | L)
ω(a | L; ε)

)
Q(L, a;ϑ)

}

=E {(1→ 1)Q(L, a;ϑ)} = 0.

Mats Stensrud Randomisation and Causation Spring 2025 254 / 422



Proof continues (note: no reference to counterfactuals)

Proof.
Suppose now that ω(a | l ; ε) is mis-specified, but the outcome model Q(l , a;ϑ) is
correctly specified. After some algebra,

E
[
I (A = a)Y

ω(a | L; ε) +
(
1→ I (A = a)

ω(a | L; ε)
)
Q(L, a;ϑ)

]

=E
[
Q(L, a;ϑ) +

I (A = a)

ω(a | L; ε){Y → Q(L, a;ϑ)}
]

Due to the correct specification, we know that the first term
E[Q(L, a;ϑ)] = E[E(Y | L,A = a)]. Furthermore, using iterative expectation
twice on the second term (similar to part 1 of the proof)

E
[
I (A = a)

ω(a | L; ε){Y → Q(L, a;ϑ)}
]

=E
[
E (I (A = a) | L)

ω(a | L; ε) {E (Y | L,A = a)→ Q(L, a;ϑ)}
]
= 0.
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Some practical thoughts on estimation

If we cannot guarantee that our model is correctly specified, we should in
principle try to use di”erent estimators (In practice it can be di!cult).

If all estimators give similar results, then there is some evidence (but not a
guarantee!!) that we have modelled the problem correctly.

If the estimators do not give the same results, try to understand why...

In practice some degree of misspecification is inescapable in all models, and
model misspecification will introduce some bias. But the misspecification of
the treatment model (IP weighting) and the outcome model
(standardization) will not generally result in the same magnitude and
direction of bias in the e”ect estimate. Therefore the IP weighted estimate
will generally di”er from the standardised estimate because unavoidable
model misspecification will a”ect the point estimates di”erently.
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New conceptual example, relevant for the analysis of
simple randomised experiments (from Dukes)

We aim to assess the e”ect of a simple treatment A (1 : treatment,
0 : control) on mortality Y (1: yes; 0: no) after one year.

We have data from a trial in which A is randomly assigned.

Suppose that, by chance, baseline disease severity L is more common
on average in the treatment arm.

Statistician 3 proposes to correct for the imbalance by fitting the
outcome model regression model

logit{Q(l , a;ϑ)} = ϑ1 + ϑ2a+ ϑ3l .
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Example continues

Statistician 4 disagrees, because she is worried about model
mis-specification.

She suggests fitting the model

logit{Q(a,ϑ→)} = ϑ→
1 + ϑ→

2a.

Who is right?

By the way, Statistician 4’s model is a saturated model, because it does not
impose restrictions on the data; we just call it a model because it looks like a
model, but the model does not put any restrictions on the data generating
mechanism. Indeed, the number of parameters (here ϑ→

1
,ϑ→

2
) is equal to the

number of conditional means that are estimated (here 2, Q(a = 0,ϑ→) and
Q(a = 1,ϑ→) )
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Who is right: Statistician 3 or Statistician 4?

Some will argue that statistician 4 is right that there is no need to
account for the imbalance. 37

Statistician 4’s model is saturated, and therefore guaranteed to be
correct.

So what are the advantage of statistician 3’s approach?
Imbalance creates noise, and heuristically statistician 3 filters this
noise away.

Thus, statistician 3’s approach can drastically improve power, but the
approach relies on correct parameterization.

But let’s take a look at Statistician 5’s suggestion on the next slide.

37however, their strategy might violate the so-called conditionality principle, which
you might have encountered in classes on statistical theory.
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Statistician 5 suggests a tweak

A new statistician comes into the room and suggests an estimator for
E(Y a=1) that is based on the same model as Statistician 3, but she
suggests to do the following tweak 1

n

∑n
i=1

expit(ϑ̂1 + ϑ̂2a+ ϑ̂3Li ), where
expit(x) = 1/(1 + exp(→x)).

Lemma (Consistent RCT estimator, even if misspecified)

The estimator
1

n

∑n
i=1

expit(ϑ̂1 + ϑ̂2a+ ϑ̂3Li ) based on MLE estimates

from a logistic regression model

logit{Q(l , a;ϑ)} = ϑ1 + ϑ2a+ ϑ3l ,

unbiasedly estimates Q(l , a), even if the logistic regression model is

misspecified.
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Proof of Statistician 5

Proof.
We know that the following estimator is doubly robust, and hence consistent as
long as P(A1 = 1) is correct:

1

n

n∑

i=1

expit(ϑ̂1 + ϑ̂2a+ ϑ̂3Li ) +
I (Ai = a)

P(Ai = a)
{Yi → expit(ϑ̂1 + ϑ̂2a+ ϑ̂3Li )},

where ϑ̂ are obtained via maximum likelihood estimation.
Now, we will show that the equation above is identical to the estimator suggested
in the lemma. To see this, note that the MLE for a logistic regression model gives
a (particular) score equation that solves (PS: this you have shown in an exercise)

0 =
n∑

i=1

Ai{Yi → expit[ϑ̂1 + ϑ̂2a+ ϑ̂3Li ]},

and because P(Ai = a) is a constant,
0 =

∑n
i=1

Ai
P(Ai=a){Yi → expit[ϑ̂1 + ϑ̂2a+ ϑ̂3Li ]}.
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Section 24

More on IPW
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Further intuition on inverse probability weighting

First, IPW is a procedure

We can think of IPTW as creating an imaginary pseudopopulation in which
there is no confounding: informally, we have a population where each
individual i is represented by themselves and wi → 1 other individuals, where
wi is the weight of individual i .

More formally, we consider a new law defined by a likelihood ratio (see
next slide)

Indeed, this is the way many applied researchers (including applied
statisticians) think about this way of modelling. Formally, we do not need
the concept of a pseudopopulation, but it is sometimes a useful motivation
for the math and gives us some direction to come up with solutions.

To be explicit, let us use the subscript “ps” to denote probability and
expectation in the pseudopopulation (Pps and Eps), while P and E without
subscripts refer to the actual population. Consider the observed data
(Y ,Ak , Lk) .
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General positivity definition

Here is a more general definition of positivity that I include for your
reference. The function gjl (·) gives a value to ajl under the counterfactual
regime g of interest.

Definition (Positivity)

for each k ↑ {0, . . . ,K}, suppose

p(vjk | v jk↑1) > 0 ↓ v jk s.t.

p(v jk↑1) > 0 and v jl = gjl (v jl↑1), l = 1, . . . , k .

The intuition is that covariates that will have positive probability in the
counterfactual world must also have positive probability in the observed
world. Otherwise, we cannot identify outcomes in the counterfactual world
from the observed data distributions.
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IPW more explicitly

We define the law Pps(Y = y ,AK = aK , LK = lK ) by the likelihood
ratio

pps(Y ,AK , LK )

p(Y ,AK , LK )
=

g(AK )∏K
k=0

p(Ak | Lk ,Ak↑1)
,

where we sometimes will use the short hand notation AK = A and
LK = L. We call this likelihood ratio a weight. Thus

g(A) =
∏K

k=0
pps(Ak | Lk ,Ak↑1),

p(Y | LK ,AK ) = pps(Y | LK ,AK )∏K
j=0

p(Lj | Lj↑1,Aj↑1) =
∏K

j=0
pps(Lj | Lj↑1,Aj↑1).

That is, some of the conditional densities are identical in the
pseudopopulation and the observed population, and, importantly,
g(A) is not a function of L.

Intuitively, We can think of IPTW as a procedure to cut the arrows
(in a DAG) from the covariate history (Lk ) into treatment (Ak).
Indeed, many applied researchers like this heuristic way of thinking
about the problems.
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IPW continues: 2 features

Now we state two features of IPW.

Feature 1:

When using unstabilised weights,
Pps(Ak = ak | Ak↑1 = ak↑1, Lk = lk) = 0.5.
In the pseudopopulation,

(Ak ↔↔ Ak↑1, Lk)ps .

When using stabilised weights,
Pps(Ak = ak | Ak↑1 = ak↑1, Lk = lk) = P(Ak = ak | Ak↑1 = ak↑1).
In the pseudopopulation, we have that

(Ak ↔↔ Lk | Ak↑1)ps .

PS: A pseudopopulation is defined differently than a

counterfactual population, but the results in the next

slide shows how they are related.
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IPW continues: 2 important features

Feature 2:
Suppose that exchangeability, positivity and consistency hold. Then, IPW
creates a pseudopopulation characterised by the following:

Regardless of whether we use unstabilised or stabilised weights,

E(Y a) = Eps(Y
a) = Eps(Y | A = a).

Thus, the average causal e”ect is equal to association in the
pseudopopulation, and

E(Y a)→ E(Y a→) = Eps(Y | A = a)→ Eps(Y | A = a
→).
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IPW theorem

We will give a theorem that shows feature 2 38:
Remember that the g-formula for the marginal of Y ↗ YK under treatment
assignment a ↗ aK = (a0, . . . , aK ) is defined as

ba(y) =
∑

lK

p(y | lK , aK )
K

j=0

p(lj | l j↑1, aj↑1).

Theorem (IPW theorem)

Under positivity, 
yba(y)dy = Eps(Y | A = a).

You will see that the theorem is very similar to other IPW results we have already
showed.

38Feature 1 follows from some of the steps in the proof of feature 2, but I haven’t
written out all the details here
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